Polaron hopping mediated by nuclear tunnelling in semiconducting polymers at high carrier density.
نویسندگان
چکیده
The transition rate for a single hop of a charge carrier in a semiconducting polymer is assumed to be thermally activated. As the temperature approaches absolute zero, the predicted conductivity becomes infinitesimal in contrast to the measured finite conductivity. Here we present a uniform description of charge transport in semiconducting polymers, including the existence of absolute-zero ground-state oscillations that allow nuclear tunnelling through classical barriers. The resulting expression for the macroscopic current shows a power-law dependence on both temperature and voltage. To suppress the omnipresent disorder, the predictions are experimentally verified in semiconducting polymers at high carrier density using chemically doped in-plane diodes and ferroelectric field-effect transistors. The renormalized current-voltage characteristics of various polymers and devices at all temperatures collapse on a single universal curve, thereby demonstrating the relevance of nuclear tunnelling for organic electronic devices.
منابع مشابه
Electrical conductivity anomaly in silver vadadium-tellurite glasses at temperatures higher than a characteristic temperature: evidence for an ionic-nonadiabatic polaronic mixed conduction
Electrical conduction anomaly was observed in the mixed ion-polaron regime for xAg2O-40TeO2-(60-x)V2O5 glassy system with 0 ≤x≤ 50 mol%, which were prepared by common melt quenching method. For the understudied glasses, the temperature dependence of dc electrical conductivity was measured from a characteristic temperature to 380 K, which certified their semiconducting nature. The measured condu...
متن کاملUnified description of charge-carrier mobilities in disordered semiconducting polymers.
From a numerical solution of the master equation for hopping transport in a disordered energy landscape with a Gaussian density of states, we determine the dependence of the charge-carrier mobility on temperature, carrier density, and electric field. Experimental current-voltage characteristics in devices based on semiconducting polymers are excellently reproduced with this unified description ...
متن کاملCarrier heating in disordered organic semiconductors
We propose a semi-implicit model for hopping transport in disordered media with application to organic semiconductors. The results show excellent agreement with both Monte Carlo and standard master-equation calculations. In organic LEDs the applied field would result in heating of the charge carrier population by up to 100 °C above the lattice temperature and is more effective at lower temperat...
متن کاملMapping polarons in polymer FETs by charge modulation microscopy in the mid-infrared
We implemented spatial mapping of charge carrier density in the channel of a conventional polymer Field-Effect Transistor (FET) by mid-infrared Charge Modulation Spectroscopy (CMS). CMS spectra are recorded with a high sensitivity confocal Fourier Transform Infra-Red (FTIR) microscope by probing electroinduced Infra-Red Active Vibrational (IRAV) modes and low-energy polaron bands in the spectra...
متن کامل5 Adiabatic self - trapped states in carbon nanotubes
We study here polaron (soliton) states of electrons or holes in a model describing carbon-type nanotubes. In the Hamiltonian of the system we take into account the electron-phonon interaction that arises from the deformation dependencies of both the on-site and the hopping interaction energies. Using an adiabatic approximation, we derive the equations for self-trapped electron states in zigzag ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 4 شماره
صفحات -
تاریخ انتشار 2013